
Journal of Computational Physics 229 (2010) 4225–4246
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Handling solid–fluid interfaces for viscous flows: Explicit jump
approximation vs. ghost cell approaches

Qinghai Zhang a,*, Philip L.-F. Liu b,c

a Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
b School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
c Institute of Hydrological and Oceanic Sciences, National Central University, Jhongli, Taiwan
a r t i c l e i n f o

Article history:
Received 18 February 2009
Received in revised form 7 February 2010
Accepted 8 February 2010
Available online 14 February 2010

Keywords:
Explicit jump approximation
Ghost cell approach
Viscous flow
Diffusion equation
Heat equation
Jump correction
The immersed interface method
Irregular solid boundary
The polygonal area mapping method
HyPAM
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.02.007

* Corresponding author. Tel.: +1 510 4867473; fa
E-mail address: QHZhang@lbl.gov (Q. Zhang).
a b s t r a c t

The ghost cell approaches (GCA) for handling stationary solid boundaries, regular or irreg-
ular, are first investigated theoretically and numerically for the diffusion equation with
Dirichlet boundary conditions. The main conclusion of this part of investigation is that
the approximation for the diffusion term has to be second-order accurate everywhere in
order for the numerical solution to be rigorously second-order accurate. Violating this prin-
ciple, the linear and quadratic GCAs have the following shortcomings: (1) restrictive con-
straints on grid size when the viscosity is small; (2) susceptibleness to instability of a time-
explicit formulation for strongly transient flows; (3) convergence deterioration to zeroth-
or first-order for solutions with high-frequency modes. Therefore, the widely-used linear
extrapolation for enforcing no-slip boundary conditions should be avoided, even for regular
solid boundaries. As a remedy, a simple method based on explicit jump approximation
(EJA) is proposed. EJA hinges on the idea that a velocity-derivative jump at the boundary
reduces to the value of the velocity-derivative at the fluid side because the velocity of
the stationary boundary is zero. Although the time-marching linear system of EJA is not
symmetric, it is strictly diagonal dominant with positive diagonal entries. Numerical
results show that, over a large range of viscosity and grid sizes, EJA performs much better
than GCAs in terms of stability and accuracy. Furthermore, the second-order convergence
of EJA does not depend on viscosity and the spectrum of the solution, as those of GCAs do.
This paper is written with enough details so that one can reproduce the numerical results.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

For any irregular domain with smooth boundaries, a smooth function can be extended across a boundary with a bound on
the relative increase in the error norms. This is the essential idea behind the ghost cell approach (GCA). With the ghost cell
values updated by extrapolating from inside the fluid phase, the boundary conditions at the solid–fluid interface are implic-
itly fulfilled. This approach dates back to Mayo [13] in 1980s and has been widely adopted by researchers; one group of
examples [18,1] concerns the immersed boundary (IB) method with the finite difference formulation.

There exist numerous ways of obtaining the ghost cell values, most of them are variants of two formulas: the linear
extrapolation via image points, hereafter referred to as GC1, and the quadratic extrapolation via polynomial fitting, hereafter
referred to as GC2. Both GC1 and GC2 have been widely used in treating irregular boundaries, see [20,18] for two examples
and [16] for a wide perspective.
. All rights reserved.

x: +1 510 4866900.

http://dx.doi.org/10.1016/j.jcp.2010.02.007
mailto:QHZhang@lbl.gov
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

4226 Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246
This paper considers the nonhomogeneous diffusion equation,
Fig. 1.
bounda
@u
@t
¼ mr2uþ f ðx; tÞ; ð1Þ
where x 2 RD is the location vector, t the temporal coordinate, u ¼ uðx; tÞ a continuous scalar function with its value being a
constant zero within the solid phase, m the dynamic viscosity, and the forcing term f ðx; tÞ is known a priori. In this and the
next sections, we will focus on the one-dimensional version of (1):
@u
@t
¼ m

@2u
@y2 þ f ðy; tÞ; ð2Þ
where y denotes the vertical coordinate. The solid–fluid interface is located at yB ¼ bh, with h being the uniform mesh spac-
ing, as shown in Fig. 1. The regular boundary case in Fig. 1(a) can be considered as a special case of the irregular boundary
case in Fig. 1(b) with b ¼ 0. Without loss of generality, it is assumed that b 2 � 1

2 ;
1
2

� �
and the discretization of u is cell-cen-

tered. The value of u in the jth cell is represented by uj, located at yj ¼ jþ 1
2

� �
h.

Referring to Fig. 1(b), the image point of y�1 with respect to the interface is located at yimage ¼ 2bþ 1
2

� �
h, where a linear

interpolation yields uimage ¼ 2bu1 þ ð1� 2bÞu0. GC1 sets the ghost cell value by
uGC1
�1 ¼ 2uB � uimage: ð3Þ
When b ¼ 0 (i.e. regular boundary) and uB ¼ 0, (3) reduces to the well-known no-slip condition u�1 ¼ �u0 for regular bound-
aries, as shown in Fig. 1(a). Since (3) is linear, using a higher-order interpolation for uimage does not improve the overall accu-
racy unless more image points are introduced.

In GC2, the ghost cell value is evaluated by fitting a quadratic polynomial near the interface:
uGC2
�1 ¼ ~u � h

2

� �
; ð4Þ

~uðyÞ ¼
y� 3

2 h
� �

y� 5
2 h

� �
b� 3

2

� �
b� 5

2

� �
h2 uB þ

y� 5
2 h

� �
ðy� bhÞ

h2 b� 3
2

� � u1 �
y� 3

2 h
� �

ðy� bhÞ
h2 b� 5

2

� � u2;
where the irregular cell value u0 is excluded to prevent instabilities from b � 1
2.

Taylor expansions of (3) and (4) at y0 yield
uGCk
�1 þ u1 � 2u0

h2 � @
2u
@y2

�����
0

¼ TGCk@
kþ1u
@ykþ1

�����
0

þ OðhkÞ; ð5Þ
where
TGC1 ¼ �1� 8bþ 4b2

4
ð6aÞ

TGC2 ¼ 1þ 2b
2

h ð6bÞ
Cells in the vicinity of the solid–fluid interface. Light gray area represents the solid phase and white area is occupied by the fluid phase. u�1 is a
ry condition to be specified. ‘ � 0 represents the image point of y�1.

Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246 4227
It is clear from (5) that GCk introduces error of Oðhk�1Þ in approximating the diffusion term near the solid–fluid interface. For
an explicit second-order method, one can expect that the errors near the solid–fluid interface propagate to the interior of the
fluid phase by numerical diffusion and the accuracy is less than second-order, at least in the 1-norm sense. However, ex-
plicit treatment of the diffusion term incurs a restrictive time step constraint Dt � Oðh2Þ and the diffusion term is usually
handled implicitly to avoid this constraint. This immediately raises a question on how a solution of (1) is influenced by per-
turbations of codimension one.

For Poisson’s equation, it is well-known that the perturbations from GCA are negligible for solvers with second-order
convergence. By examining the error equation for Poisson’s equation, Johansen and Colella [6] showed that although GC2
generates a first-order truncation error on the boundary, the solution error induced is third-order; thus the second-order
convergence rate is not influenced. McCorquodale et al. [14] also confirmed that both GC1 and GC2 are second-order
accurate and even the solution gradient of GC2 is second-order accurate. As for the diffusion equation, Gibou and Fedkiw
[4] claimed that a cubic extrapolation yields fourth-order accuracy of the solution, their supporting numerical tests only
consisting of single Fourier modes with exponentially decaying amplitudes. However, we believe that effects of boundary
perturbations on the diffusion equation is very different from those on Poisson’s equation. As will be proved in Section 2,
a diffusion equation solver has to approximate the diffusion term to kth order accuracy everywhere inside the do-
main in order to be rigorously kth order accurate. This requires that the extrapolation near the boundary be
(k+2)th order accurate. Although sometimes a lower-order extrapolation may achieve super-convergence for solutions
with a finite spectrum, this super-convergence does not apply to solutions with infinite spectrum, especially when vis-
cosity is small.

In particular, GC1 and GC2 has asymptotic convergence of second- and third-order for solutions with low-frequency
modes; but they are only zeroth and first-order accurate for some test cases in Section 4. Even when they do exhibit sec-
ond-order convergence, their errors are much larger than those of the proposed explicit jump approximation (EJA) method
in a wide range of grid sizes, as will be shown in Section 4.3. Furthermore, the asymptotic convergence of GCA requires the
grid size to be smaller than a ‘critical’ grid size, which can be prohibitively small as viscosity is reduced. This coupling of
convergence rate to viscosity is undesirable. In addition to the accuracy issues, instability of an explicit formulation of
GCA is also reported in Section 4.2.

A straightforward way to improve the accuracy of GCA in one-dimensional space is to fit a cubic or even higher-order
polynomial near the solid–fluid interface so that the diffusion term is uniformly approximated to second-order everywhere
inside the fluid phase. However, in multi-dimensional spaces, extrapolations from different dimensions yield different val-
ues, as shown in Fig. 4. There are three ways to address this issue: (1) using a linear combination of these conflicting values
[1]; (2) storing D ghost values at each ghost cell; (3) resort to multi-dimensional polynomial-based interpolation. In the last
choice, the local qth order polynomial must have

Pq
‘¼0C‘

Dþ‘�1 terms including all the coordinates and their cross terms to pre-
serve ðq� 1Þth order-of-accuracy of the Laplacian term. For example, a fourth-order solver in three-dimensional space in-
volves fitting a fifth-order polynomial, requiring solving at least a 56 � 56 linear system for each ghost cell value.

An alternative method to overcome the above two difficulties is to treat u as a function with discontinuities at the solid–
fluid interface and incorporate the jump conditions into the discretization stencils. The immersed interface method (IIM)
[10] is an example. Although the IIM was originally designed for elliptic problems, it has been extended to Stokes flows
[11], Poisson’s equation [3], parabolic equations [21,5], and incompressible Navier–Stokes equations [12,9]. Applications
to rigid, flexible and moving boundaries [23,8] were also reported. One difficulty of the IIM, however, is the lack of jump
conditions for high-order derivatives. To avoid this challenge, Zhong [29] and Zhou [30] have proposed their own high-order
methods for solving elliptic equations by using two jump conditions for the value of the variable and its first-order deriva-
tive. Mathematically, these methods are equivalent to explicitly approximating high-order derivatives by either Taylor
expansion or local polynomial fitting. However, in the case of a rigid solid phase, even the jump conditions on the first-order
derivatives are unavailable.

Fortunately, the velocity and its derivatives for stationary solid–fluid interface are all zero. Thus, the velocity-derivative
jumps reduce to the values of velocity-derivatives on the fluid side. This fact leads to the explicit jump approximation (EJA)
method formulated in Section 3. Unlike the GCA, the extrapolation target of EJA is the interface, not the ghost cell. As will be
shown in Fig. 4 in Section 3.2, the extrapolation of EJA is essentially one-dimensional because intersections of the interface to
different directions are distinct. This permits a simple generalization to multi-dimensional spaces in a dimension-by-dimen-
sion way.

Similar to the IIM, EJA is based on the generalized Taylor expansion and discretization stencils are locally modified near
the interface; unlike IIM, EJA approximates the jump conditions explicitly by extrapolation instead of deriving it from phys-
ical constraints. Also, the jumps in EJA are with respect to the coordinates, not with respect to the normal direction of the
interface. These result in a simpler formulation without requiring jump condition derivation and local-global coordinate
transformations. Roughly EJA can be viewed as an IIM specialized for stationary solid–fluid interfaces.

The rest of this paper is organized as follows. Section 2 answers the question on how a solution of (1) is influenced by
perturbations near the solid–fluid interface, motivating the development of EJA in Section 3, where the time-marching linear
system of EJA is shown to be strictly diagonally dominant. Section 4 evaluates the stability and accuracy of EJA and GCA via
extensive tests in one-, two- and three-dimensional spaces. Finally, Section 5 outlines future work for coupling EJA to the
polygonal area mapping method (PAM) [26] and HyPAM [28] to form a three-phase model including gas, fluid and solid.

4228 Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246
2. An error analysis

Consider the one-dimensional homogeneous diffusion equation
@u
@t
¼ m

@2u
@y2 ; ðu; tÞ 2 ½0;1� � ½0;1Þ ð7Þ
with initial and boundary conditions as
uðy;0Þ ¼ uðyÞ; uð0; tÞ ¼ uð1; tÞ ¼ 0: ð8Þ
Handling the solid–fluid interface at y ¼ 0 by GCA adds into (7) a nonhomogeneous term that is zero everywhere except near
the interface:
@u
@t
¼ m

@2u
@y2 þ Tðy; tÞ; ð9Þ
where Tðy; tÞ can be deduced from (5) as
Tðy; tÞ � TðtÞ ¼
mTGCkðtÞ uðkþ1Þ

��
h
2

y 2 ½0;h�

0 y 2 ðh;1�

(
; ð10Þ
with uðkþ1Þjh
2

as the value of the ðkþ 1Þth spatial partial derivative at h
2. Tðy; tÞ is assumed to be independent of y within the

computational cell abutting the solid–fluid interface.
In the following we shall derive the exact solutions of the above homogeneous and nonhomogeneous problems; their dif-

ference yields the solution error caused by Tðy; tÞ. The derivation can also be generalized to diffusion equations with Robin
boundary conditions [2].

If x and t are separable, the solution of (7) and (8) can be derived as
uðy; tÞ ¼
X1
m¼1

umekmmt sinðmpyÞ; ð11Þ
where km ¼ �m2p2 is the mth eigenvalue of the second-order spatial derivative and
um ¼ 2
Z 1

0
uðzÞ sinðmpzÞ dz: ð12Þ
To accommodate the nonhomogeneous term, we seek a solution of (9) in the form
uðx; tÞ ¼
X1
m¼1

umðtÞ sinðmpyÞ; ð13Þ
by setting
TmðtÞ ¼ 2
Z 1

0
Tðz; tÞ sinðmpzÞ dz ¼ 2mTGCkuðkþ1Þjh

2

Z h

0
sinðmpzÞ dz ¼ 4mTGCkuðkþ1Þjh

2

1
mp

sin2 mph
2

� �
; ð14Þ
so that
Tðy; tÞ ¼
X1
m¼1

TmðtÞ sinðmpyÞ: ð15Þ
Substitution of (15) and (13) into (9) yields a series of initial value problems, from which the solution of (9) can be obtained
as
uðy; tÞ ¼
X1
m¼1

umekmmt sinðmpyÞ þ E; ð16Þ
where the contribution of the nonhomogeneous term is
Eðy; tÞ ¼
X1
m¼1

Z t

0
ekmmðt�sÞTmðsÞ ds

� �
sinðmpyÞ: ð17Þ
Since (11) and (16) are solutions to (7) and (9), respectively, (17) is indeed caused by the leading truncation error of GCA.
Substituting (14) into (17) yields
Eðy; tÞ ¼
X1
m¼1

bGCk
m

sinðmpyÞ
mp

Z t

0
mekmmðt�sÞuðkþ1Þ��

h
2

ds
� �

; ð18Þ

Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246 4229
where bGCk
m ¼ Oðhk�1Þ. In particular, if b ¼ 0 in (6), then
bGC1
m ¼ � sin2 mph

2

� �
; ð19aÞ

bGC2
m ¼ 2h sin2 mph

2

� �
: ð19bÞ
The integral in (18) represents the coupling of perturbations from GCA and the temporal error accumulation. Because
uðkþ1Þjh

2
ds is independent of the wave number m, the summation with respect to m in general does not cancel. This nonlinear

coupling of time and spatial Fourier modes accounts for the subtle difference between Poisson’s equation and the diffusion
equation on how the solution reacts to the perturbations at the boundary.

Based on (18) and (19), the following can also be deduced:

(I) For a single Fourier mode m, given y; t, GC1 and GC2 are asymptotically second-order and third-order accurate, respec-
tively, i.e.,
h! 0)
bGC1

m � Oðh2Þ
bGC2

m � Oðh3Þ

(
)

EGC1
m � Oðh2Þ

EGC2
m � Oðh3Þ

(
: ð20Þ
(II) Let the solution (11) have a finite number of Fourier modes and mmax be the largest wave number. Define a critical grid
size as
hcrit ¼
2

pmmax
: ð21Þ
Within the range of grid sizes such that h > hcrit , GC1 and GC2 are only zeroth-order and first-order accurate, respec-
tively. Depending on the spectrum of the solution, hcrit might be small and the range of lower-order convergence is
then large.

(III) In practice, one often observes second-order convergence for GC1 and GC2 in the numerical tests of the diffusion equa-
tion because either the solution contains only low-frequency modes (e.g. [4]) or high-frequency modes are quickly
damped out. The ‘damping capacity’ of the physical system relates to viscosity: the higher the viscosity, the faster high
frequency modes are damped. When viscosity is very small, high-frequency errors persist due to slow damping. For
GC1 and GC2, their second-order convergence rates thus depend on a large viscosity to damp out their low-order trun-
cation errors, see also the argument after (38) and (39) for a precise explanation. As another way to understand this,
let t0 ¼ mt, (7) can be viewed as another heat equation with a changed time variable and unit viscosity; a small m effec-
tively changes a transient solution in t0 to a steady solution in t.

(IV) Due to the presence of the forcing term f ðy; tÞ, the nonhomogeneous diffusion Eq. (1) might have high-frequency
modes persisting (or even increasing) over time. Examples include the pressure-driven steady flow and impinging
jet on a solid–fluid interface, in both scenarios the pressure gradient and the advection term serve as the combined
forcing term. Therefore, coupling convergence rate to viscosity has a negative impact on the solution accuracy of many
practical applications because high-frequency modes do not always die out.

(V) If the diffusion term is approximated to second-order near the boundary, then E � O h2 sin2 mph
2

� �� 	
and the second-

order convergence rate does not depend on the spectrum of the solution. This is the case with cubic GCA and EJA.

Numerical experiments in Section 4 will confirm these remarks. Together with the instability of time-explicit GCA shown
in Section 4.2, they motivate EJA formulated in the next section.

3. The explicit jump approximation method

In this section, the EJA method is fully detailed for the nonhomogeneous diffusion Eq. (1) with irregular solid–fluid inter-
faces. Within its framework, simply changing the jump correction form also implements GCA. It is important to point out
that many projection methods for the Navier–Stokes equations use this procedure to obtain intermediate results. Thus,
the algorithm described here is not only pertinent to the diffusion equation, but also applicable to a wider context.

3.1. Mathematical foundation

Like the IIM, the theoretical foundation of the EJA method is the generalized Taylor expansion, which has already been
proved in the literature [22,24].

Theorem 1 (Generalized Taylor expansion). Assume function gðyÞ has m discontinuity points of the first kind at y1; y2; . . . ; ym in
ðy0; ymþ1Þ; y0 < y1 < � � � < ymþ1 and gðyÞ 2 C1ðy0; y1Þ [ðy1; y2Þ [� � � [ðym; ymþ1Þ, as shown in Fig. 2. gðyÞ can be either
continuous or discontinuous at y0 and ymþ1. Let

Fig. 2. A function gðyÞ with finite discontinuities. gðyÞ is continuous at y1 while its derivatives are not. In contrast, gðxÞ and all its derivatives are
discontinuous at y2.

4230 Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246
gðnÞðyiÞ
�
�

¼ gðnÞðyþi Þ � gðnÞðy�i Þ ð22Þ
denote the jump of the nth derivative where n ¼ 0;1;2; . . . and i ¼ 1;2; . . . ;m, then
gðy�mþ1Þ ¼
X1
n¼0

gðnÞðyþ0 Þ
n!

ðymþ1 � y0Þ
n þ

Xm

i¼1

X1
n¼0

gðnÞðyiÞ
�
�

n!
ðymþ1 � yiÞ

n
; ð23aÞ

gðyþ0 Þ ¼
X1
n¼0

gðnÞðy�mþ1Þ
n!

ðy0 � ymþ1Þ
n �

Xm

i¼1

X1
n¼0

gðnÞðyiÞ
�
�

n!
ðy0 � yiÞ

n
: ð23bÞ
Theorem 1 gives rise to a generalized finite differencing that can be applied to functions with discontinuities.

Proposition 2 (Generalized central finite difference). Let yjþ1 � yj ¼ yj � yj�1 ¼ h > 0 and yj�1 < a < yj 6 b < yjþ1.
uðyÞ 2 C1ðyj�1;aÞ [ða; bÞ [ðb; yjþ1Þ. Then
d u y�j
� 	

d y
¼

u y�jþ1

� 	
� u yþj�1

� 	
2h

� 1
2h

X2

n¼0

uðnÞðaÞ
�
�

n!
ðyj�1 � aÞn þ

X2

n¼0

uðnÞðbÞ
�
�

n!
yjþ1 � b
� �n

 !
þ Oðh2Þ ð24Þ

d2uðy�j Þ
dy2 ¼

u y�jþ1

� 	
þ u yþj�1

� 	
� 2u yj

� �
h2

þ 1

h2

X3

n¼0

uðnÞðaÞ
�
�

n!
ðyj�1 � aÞn �

X3

n¼0

uðnÞðbÞ
�
�

n!
ðyjþ1 � bÞn

 !
þ Oðh2Þ ð25Þ
Proof. Using (23) to expand uðyjþ1Þ and uðyj�1Þ at y�j yields (24) and (25). h

According to Proposition 2, when there is only one jump between yj�1 and yjþ1, the location of the jump has to be com-
pared with yj in order to select the proper form of a velocity derivative jump. Thus, for the configuration in Fig. 1(b), (25)
reduces to�
@2u
@y2

����
0

¼ u1 þ u�1 � 2u0

h2 þ 1

h2

X3

n¼0

uðnÞðyBÞ
�
�

n!
ðy�1 � yBÞ

n

 !
þ Oðh2Þ; ð26Þ
where yB is the location of the interface between y�1 and y0, assuming no interface exists between y0 and y1.
Identifying u as velocity for physical variable, the continuity of u implies
½u�½ �B ¼ 0) uðyþB Þ ¼ uðy�B Þ ¼ uB;
where the speed of the solid phase, uB, is assumed to be identically zero, which further implies that the velocity-derivatives
of the solid phase are zero. Hence, for n P 1,
uðnÞ
�
�

B ¼ uðnÞðyþB Þ � uðnÞðy�B Þ ¼
uðnÞðyþB Þ; yþB is in fluid
�uðnÞðy�B Þ; y�B is in fluid

(
:

In other words, jumps of the derivatives are reduced to the derivatives at the fluid side, due to the assumption of u being zero
in the solid phase and continuous in the whole domain.

In Appendix A the jumps of derivatives in (25) are approximated so that the second-order accuracy is preserved. Utilizing
the results there, (25) can be written as

Fig. 3.
close to
vector s

shown

Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246 4231
h2 d2uðy�j Þ
dy2 ¼ ujþ1 þ uj�1 � 2uj þ VEJAðuj;ujþs;ujþ2sÞT þ Oðh4Þ; ð27Þ
where s ¼ 1 if the solid–fluid interface lies at the negative side of the fluid; otherwise s ¼ �1.
VEJAð�Þ ¼ ð�� 1Þ 3
�
; � 3

�þ 1
;

1
�þ 2

� �
; ð28Þ
where � is the normalized distance from the cell center to the solid–fluid interface, � ¼ 1
2� b in Fig. 1 (b). In the next section,

these definitions are generalized to multi-dimensional space as in (33) and (34) with � ¼ min �þi;d; �
�
i;d

� 	
.

Approximation of the second-order derivative by GCA can be put into similar forms:
h2 d2uðy�j Þ
dy2 ¼ ujþ1 þ uj�1 � 2uj þ VGCkðuj;ujþs; ujþ2sÞT þ Oðhkþ1Þ; ð29Þ
where
VGC1ð�Þ ¼ �2�; 2�� 1; 0ð Þ; ð30aÞ

VGC2ð�Þ ¼ 0; 3
�� 1
�þ 1

; �2
�� 1
�þ 2

� �
: ð30bÞ
3.2. Laplacian discretization

Hereafter we expand our notation to D-dimensional space. For exposition convenience, the computational domain is as-
sumed to have N cells in each dimension with uniform grid size h. A cell is identified by a multi-index i ¼ ði0; i1; . . . ; iD�1Þ 2 ZD.
A bijective mapping M : ½0;N � 1�D ! ½0;ND � 1� sends a multi-index to a scalar index:
MðiÞ ¼
XD�1

d¼0

Nd id: ð31Þ
The stencil to discretize the Laplacian operator is a set of 2Dþ 1 multi-indices:
SðiÞ ¼ iþ aed : a ¼ �1;0;1; d ¼ 0;1; . . . ;D� 1
� �

; ð32Þ
where the dth component of ed is one and all other components are 0.
Let B denote the compact set representing the solid phase, and xi ¼ iþ 1

2

� �
h the center of cell i, cell i is

	 a fluid cell iff 8j 2 SðiÞ;xj R B;
	 an interface cell iff xi R B, but 9j 2 SðiÞ;xj 2 B;
	 a solid cell iff xi 2 B.

This classification is illustrated in Fig. 3. Discretizing the Laplacian operator in the interface cells has to incorporate the
jump conditions, which necessitate the definition of a pair of vectors �
i , whose dth components are the normalized distance
between the cell center and the boundary of B along the dth axis:
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) a slope as the irregular boundary.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) a triangle solid inside the domain.

Cell classification. Shaded area represents the solid phase. A solid cell marked by ‘�’ has its center inside the solid; an interface cell marked by ‘�’ is
the solid–fluid interface; a fluid cell marked by ‘+’ does not need jump correction. To capture the geometry, each interface cell also has a labeling

i indicating the orientation of the nearby solid and another pair of vectors �
i recording the normalized distance from its center to the interface, as
in Fig. 4.

4232 Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246
�
i;d ¼
þ1; if xi
 ched : c 2 Rþ

� �
\ B ¼ ;

inf c 2 Rþ : xi
 ched 2 B
� �

; otherwise

(
; ð33Þ
and a sign vector si whose dth component is
si;d ¼
1; if ��i;d 6 �

þ
i;d

�1; if �þ
i;d < �

�
i;d

(
: ð34Þ
As shown in Fig. 4, si;d indicates the relative orientation of the center of cell i and the nearby solid along the dth axis while �
i;d
stores the normalized distances. For example, cell i in Fig. 4 has �þi;1 ¼ þ1; ��i;1 < 1, and si;1 ¼ 1; similarly, cell i0 has
�þ

i0 ;0 ¼ þ1; ��i0 ;0 < 1, and si0 ;0 ¼ 1.
Starting from the geometry information as above, the Laplacian operator can be discretized as
h2r2U ¼ ALU þUþ Oðh4Þ; ð35Þ
where AL 2 RND�ND
includes the jump corrections and U 2 RND�1 contains the domain boundary conditions. U 2 RND

is the
unknown vector of u at cell centers ordered by (31).

Algorithm 1. Discretizing Laplacian operator by the EJA method. VEJA is defined in (28). Alternatively, one can replace VEJA

with VGCk in (30) for a GCA discretization. AL
m1;m2

refers to the element of AL at the m1th row and m2th column. Similarly, Um1

refers to the m1th element of U.
Because of the absence of cross differentiation terms, the jump corrections can be applied dimension by dimension. Algo-

rithm 1 formalizes this idea by assembling AL and U from the geometrical information and boundary conditions. In this algo-

Fig. 4. Capturing geometry of interface cells for Laplacian discretization. The thick solid line segments represent the distances between the cell center and
the interface along a certain axis in cell i and i0 . Intersecting the solid–fluid interface to dotted lines yield the sites of extrapolation targets, represented by

‘	’s and ‘N’s. ‘�’s and ‘M’s represent physical quantities involved in approximating @nu
@yn

h ih i
and @n u

@xn

�
�

at these extrapolation targets, respectively. The fact of

‘	’s and ‘N’s being distinct enables EJA to be locally one-dimensional. In contrast, one-dimensional GCA extrapolation will yield conflicting values at the
location represented by ‘j’.

Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246 4233
rithm, each cell in the domain corresponds to one row in AL. Lines 17–22 add the jump correction (28) or (30) into the stan-
dard Laplacian discretization in lines 9–16. Lines 17–22 operate only on interface cells while lines 9–16 operate on both
interface cells and fluid cells. As for the solid cells, their corresponding rows are left as zeros to reduce the number of ele-
ments to be stored in the sparse matrix AL, which is justified by the assumption that the value of the unknown and its Lapla-
cian is identically zero in the solid phase.

Proposition 3. For an irregular solid–fluid interface, the matrix AL produced by EJA in Algorithm 1 is not symmetric but
diagonally dominant.

Proof. The asymmetry of AL follows from the one-sidedness of the jump correction form (28). In Algorithm 1, a solid cell
results in a zero row and a fluid cell a row with �2D on the diagonal and 2D 1’s on other non-diagonal columns. As for
an interface cell, � 2 ð0;1Þ for some d. Since the jump corrections are applied dimension by dimension, it suffices to show
that the coefficient of uj in (28) is dominant:
2þ 3ð1� �Þ
�

����
���� > 1þ 3ð1� �Þ

�þ 1

����
����þ 1� �

2þ �

����
����þ 1;
which simplifies to ð1� �Þð6þ 2�� �2Þ > 0. h

When � � 0, the first jump correction term is very large and consequently AL might have a very large condition number.
One possible solution is to shift the jump corrections away from the boundary to avoid large condition number of AL. How-
ever, this method destroys the diagonal dominance of AL and increases the width of the jump correction stencil. Numerical
experiments such as the 2-D sphere test in Section 4 show that this method can reduce the convergence rate of EJA by up to
0.8. Consequently, it is not adopted in Algorithm 1; instead, if the distance from an interface cell center to the solid–fluid
interface is less than �minh, we simply treat the interface cell as a solid cell, as shown in lines 5–7 in Algorithm 1. Using
�min ¼ 10�4, the second-order convergence rate of EJA is not influenced for all tests in Section 4.

Algorithm 1 is general in the sense that replacing VEJA with VGCk recovers a time-implicit GCA discretization that stores
multiple ghost values in a single ghost cell. Since this yields the best accuracy of GCA and encourages module reuse, the re-
sults of GCA in Section 4 are also obtained through Algorithm 1.

To preserve the symmetry of AL, another type of time-explicit GCA formulation uses the standard Laplacian discretization
without jump corrections and incorporates the effect of solid phase into the discretization by adding to U the ghost cell val-
ues uGCk

�1 ðtnþ1Þ as defined in either (3) or (4). However, as is obvious in Section 3.3, when the integral effect of U is approx-
imated, uGCk

�1 ðtnþ1Þ, the ghost value at the end of the time step, is needed whereas this formulation can only give uGCk
�1 ðtnÞ, the

ghost value at the beginning of the time step, because the solution at tnþ1 is not available for extrapolation yet. An ad hoc
workaround sets
uGCk
�1 ðtnþ1Þ ¼ uGCk

�1 ðtnÞ: ð36Þ

4234 Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246
We shall denote this time-explicit formulation of GCA by ‘GCkE’ to distinguish it from the time-implicit formulation of GCA
defined by (29) and (30). At first sight the symmetry of AL is attractive because the time-marching matrices Bðr1Þ and Bðr2Þ in
(44) are symmetric positive-definite. However, as will be demonstrated in Section 4.2, this formulation is susceptible to
instabilities, especially in the GC1E case.

3.3. Time integration

Algorithm 1 transforms (1) into an ODE system as
dUðtÞ
dt

¼ AUðtÞ þWðtÞ; ð37Þ
where A ¼ m
h2 AL and WðtÞ ¼ f ðtÞ þ m

h2 UðtÞ. It is well-known that (37) satisfies the following recurrence relation
Uðtnþ1Þ ¼ expðDtAÞUðtnÞ þ
Z tnþ1

tn

exp ðtnþ1 � sÞAð ÞWðsÞ ds: ð38Þ
For the standard 3D Laplacian stencil, the eigenvalues of DtA are
kDtA ¼ �
mDt

h2

XD�1

d¼0

sin2 fd

2
; ð39Þ
where fd 2 ð0;pÞ. In the asymptotic range of h! 0; kDtA � 0, and the truncation error of discretizing the diffusion term are
damped very quickly through expðDtAÞ in (38). However, when m is very small, so are the absolute values of kDtA. Conse-
quently, the damping of truncation errors takes a much longer time. This argument on the difference system (37) formalizes
remark (III) in Section 2.

For time integration, a family of widely-used methods is based on the Padé approximation of the exponential function in
the RHS of (38). The well-known Crank–Nicolson method (C–N) is such an example. However, since C–N has a symbol that
tends asymptotically to �1, it is only neutrally stable and the numerical solution exhibits oscillatory behaviors for discon-
tinuities in initial and boundary conditions [7]. McCorquodale et al. [15] showed the instability of C–N by a moving boundary
calculation. Section 4.2 shows that C–N coupled with GCkE is not stable for a strongly transient flow. One reason of this insta-
bility is that C–N does not effectively damp out the errors when the grid size is small.

In contrast, the method proposed by Twizell, Gumel, and Arigu (TGA) [19] is L0-stable, i.e. its symbol tends asymptotically
to zero. It is based on a (2,1) Padé approximation of the exponential function
expðDtAÞ ¼ B�1ðr1ÞB�1ðr2ÞBða� 1Þ þ OðDt3Þ; ð40Þ
where
BðvÞ ¼ I � vDtA; ð41Þ

r1 ¼
a� ða2 � 4aþ 2Þ1=2

2
; r2 ¼

aþ ða2 � 4aþ 2Þ1=2

2
; ð42Þ
and a is in the range of 1
2 ;2�

ffiffiffi
2
p� 	

. This choice of a ensures second-order accuracy, L0 stability and the use of only real arith-
metic. In practice, a is chosen to be as large as possible to minimize the truncation error. In this work, a ¼ 0:58 is used for
TGA. Note that setting a ¼ 0:5 reduces TGA to C–N. In this work, C–N is only used in Section 4.2 to demonstrate the insta-
bility of time-explicit GCA; elsewhere TGA is always used.

Approximating the integral in the RHS of (38) by a trapezoidal rule [17,19]:
Z tnþ1

tn

exp ðtnþ1 � sÞAð ÞWðsÞ ds ¼ Dt
2

B�1ðr1ÞB�1ðr2Þ WðtnÞ þ Bð2a� 1ÞWðtnþ1Þð Þ þ OðDt3Þ; ð43Þ
the ODE (37) can be solved by
Bðr2ÞBðr1ÞUnþ1 ¼ Bða� 1ÞUn þ Dt
2

WðtnÞ þ Bð2a� 1ÞWðtnþ1Þð Þ: ð44Þ
At each time step, advancing (37) requires solving two linear systems to ensure L0 stability. It is clear from (38), (40), and (43)
that TGA is second-order accurate in time.

Proposition 4. For EJA, BðvÞ with v P 0 is strictly diagonally dominant for both regular and irregular solid–fluid interfaces.
Proof. The regular case holds because of v P 0; m > 0, the definition (41), and the fact that AL becomes the standard discret-
ization with the diagonal entries as �2D. The irregular case follows from Proposition 3. h

By the Gershgorin circle theorem, a strictly diagonally dominant matrix is non-singular. Furthermore, since all the diag-
onal entries of Bðr1Þ and Bðr2Þ are positive, the real parts of the eigenvalues of them are non-negative.

Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246 4235
3.4. Solution procedure

In summary, EJA solves the diffusion Eq. (1) with stationary solid–fluid interface as follows:

Step 1. Assemble AL by Algorithm 1 from the geometry of the solid phase.
Step 2. Set initial condition Uðt0Þ.
Step 3. Compute UðtÞ; f ðtÞ to evaluate the RHS of (44).
Step 4. Solve the two linear systems in (44) to advance the solution.
Step 5. Repeat Step 3 and Step 4 until the final time te is reached.

The solid–fluid interface being stationary implies that AL is time-independent and hence should be assembled before the
time loop; in contrast, U is time-dependent and should be updated at each time step.

4. Numerical experiments

In a computational domain ½0;1�D, the diffusion Eq. (1) is numerically solved following the procedures outlined in Sec-
tion 3.4 with WðtÞ and the initial condition uðx; t0Þ set by exact solutions. As discussed in Section 3.2, the boundary condition
is also set by exact solutions through the assembling of U in Algorithm 1. The jump conditions at the solid–fluid interface are
fulfilled differently by EJA and GCAs, as formulated in Section 3. Comparing these methods on this particular issue is exactly
the main purpose of this section.

Hundreds of test cases are performed on successively refined uniform grids with varying viscosity
log10ð1=mÞ ¼ 0;1;2;3;4;5;6. The number of cells along each dimension is N ¼ 10;20;40;80;160 in 1-D and 2-D tests and
N ¼ 8;16;32 in 3-D tests. Spatial and temporal grids are h ¼ 1

N, Dt ¼ 1
5N. The initial time t0 ¼ 20 and the final time te ¼ 21.

The convergence rate is defined as
O ¼ log2
kEðNÞk
kEð2NÞk ; ð45Þ
where EðNÞ denotes the error vector between the numerical results and the exact solution at the end of the calculation te. The
error ratios of GC1 and GC2 to EJA is measured by
RGCk
1 ¼ log10

kEkGCk
1

kEkEJA
1

; RGCk
1 ¼ log10

kEkGCk
1

kEkEJA
1

: ð46Þ
They also indicates the order-of-magnitude by which EJA is more accurate than a GCA.

4.1. Setup

Numerical tests are performed in one-, two- and three-dimensional spaces. The setup of one-dimensional tests is shown
in Fig. 1(b). For two-dimensional tests, one setup is the simple slope shown in Fig. 3(a) and the other is the circular shape
shown in Fig. 5(a). In the three-dimensional tests, the solid phase is a sphere fx :

ffiffiffiffiffiffiffiffiffi
x � x
p

6
p
5g. Cell classification on a 53 grids

for this setup is shown in Fig. 5(b).
As explained in Section 2, single Fourier mode solutions are insufficient for examining the converging behavior of GCA,

thus we choose exponential function forms as exact solutions. For 1-D tests, the exact solution is,
uðy; tÞ ¼
exp aðy� yBÞð1þ ctÞð Þ � 1 y P yB

0 y < yB

�
: ð47Þ
The 2-D slope tests have the exact solution as
uðx; y; tÞ ¼
x0 exp að1þ ctÞy0ð Þ � x0 y0 P 0
0 y0 6 0

�
; ð48Þ
where the coordinates ðx0; y0Þ relate to the original coordinates ðx; yÞ as
x0

y0

� �
¼

cos h sin h

� sin h cos h

� �
x� xs

y

� �
; ð49Þ
with xs ¼ p
10 and h ¼ p

6 as shown in Fig. 3(a).
The exact solution of the 2-D and 3-D sphere tests is
uðx; tÞ ¼ exp að1þ ctÞðx � x� r2Þ
� �

� 1; x � x > r2

0 x � x 6 r2

(
; ð50Þ
with r ¼ p
5. The forcing terms for the above exact solutions can be easily derived from the governing Eq. (1).

Fig. 5. Spherical setup for 2D and 3D tests. The D-balls are centered at the origin with a radius as p
5. The circular curve in (a) represents the fluid–solid

interface. The solid cells are marked by ‘�’ and the interface cells by ’�’. Two solid cells within each other’s stencils are connected with solid line segments;
two interface cells with dashdot segments; an interface cell and a solid cell with dotted segments.

Fig. 6. Plots of (47) with a ¼ 0:5 and yB ¼ 0. The horizontal and vertical axis are y and u, respectively. The solid, dotted and dashed lines corresponds to
t ¼ 20;20:5;21:0, respectively.

4236 Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246
In Fig. 6, (47) is plotted with a ¼ 0:5; yB ¼ 0, and c ¼ 1; 0:01 at three time instances. As c increases, the time scale of the
flow decreases and the flow becomes more transient. c ¼ 1 is used in Section 4.2 to show that time-explicit GCA might be
unstable for strongly transient flows. In Sections 4.3 and 4.4, when comparing the accuracies of EJA and GCA, a small value
c ¼ 0:01 is chosen for all tests to make the temporal change of the flow slow so that the errors come mainly from discretizing
the spatial diffusion term. In all tests a ¼ 0:5 is fixed. These parameters are carefully chosen to make both the velocity scale
and the length scale unit size so that a Reynolds number can be conveniently defined as
Re ¼ 1
m
: ð51Þ
4.2. Instability of time-explicit GCA

When (36) is used in the time-explicit GCA, a temporal error of OðDt2Þ in addition to the spatial error is introduced into
the solver. Although each of them is of a lower dimension, when coupled together, they can cause instability for strongly
transient flows.

Table 1
Error norms of 1-D tests with b ¼ 0; m ¼ 1; c ¼ 1 and Crank–Nicolson ða ¼ 0:5Þ.

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1

GC1E 3.95e+03 �30.98 8.37e+12 �117 1.49e+48 �259 1.06e+126 �552 1.65e+292
GC2E 3.95e+03 2.35 7.75e+02 2.20 1.69e+02 �45 4.71e+16 �406 7.50e+138
EJA 4.15e+03 2.38 7.95e+02 2.21 1.72e+02 2.11 3.97e+01 2.06 9.54e+00

kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1
GC1E 6.62e+03 �34.20 1.31e+14 �118 3.53e+49 �259 3.75e+127 �553 8.55e+293
GC2E 6.62e+03 2.34 1.31e+03 2.19 2.88e+02 �53 2.83e+18 �406 5.04e+140
EJA 6.69e+03 2.35 1.32e+03 2.19 2.89e+02 2.10 6.74e+01 2.05 1.63e+01

Table 2
Error norms of 1-D tests with b ¼ 0; m ¼ 1; c ¼ 1 and TGA ða ¼ 0:58Þ.

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1

GC1E 3.95e+03 2.35 7.75e+02 2.11 1.79e+02 �37.58 3.68e+13 �69.44 2.96e+34
GC2E 3.95e+03 2.35 7.75e+02 2.20 1.69e+02 2.10 3.94e+01 2.05 9.49e+00
EJA 4.15e+03 2.38 7.95e+02 2.21 1.72e+02 2.11 3.97e+01 2.06 9.54e+00

kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1
GC1E 6.62e+03 2.34 1.31e+03 2.19 2.88e+02 �41.49 8.87e+14 �69.89 9.73e+35
GC2E 6.62e+03 2.34 1.31e+03 2.19 2.88e+02 2.10 6.73e+01 2.05 1.63e+01
EJA 6.69e+03 2.35 1.32e+03 2.19 2.89e+02 2.10 6.74e+01 2.05 1.63e+01

Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246 4237
In Table 1, it is shown that both GC1 and GC2 are unstable for the transient flow case with c ¼ 1 if time discretization uses
C–N. When C–N is replaced by TGA in Table 2, GC2 is able to generate stable solutions while GC1 is still unstable.

The symmetry of the linear solver is often considered as an advantage of the time-explicit GCA, however, this might make
the solver susceptible to instabilities for transient flows. Thus, a more sophisticated approximation for the ghost cell value at
the next time step is needed in order to simultaneously retain stability and the symmetry of the linear solver. Hereafter only
TGA is used in time integration.
4.3. Accuracy and convergence: Mid-range Reynolds numbers

We first show the existence of velocity jumps in Fig. 7, where the final solutions of EJA for a 2-D slope test and a 2-D
sphere test are plotted as surfaces over 40 � 40 grids. The lighting clearly illustrates the derivative jumps of the solution
at the solid–fluid interface.

For the 1-D tests, Table 3 shows the results for the regular boundary case b ¼ 0 with m ¼ 10�3. It is clear that GC1 is much
less accurate than GC2, which is in turn less accurate than EJA. In the case of GC1, the grid size has to be reduced to the finest
in order for it to reach second-order convergence. The convergence rate of GC2 also varies with the grid size and is close to 3
on the two finest grids. In contrast, the convergence rate of EJA is steadily at 2 regardless of the grid size. These observations
confirm the remarks (I) and (V) in Section 2.

In Table 4, the error norms of the same test cases of Table 3 are re-evaluated within a distance to the solid–fluid interface
instead of over the whole domain. Comparing Table 4 to Table 3, it is clear that the maximum error of GC1 and GC2 always
happens near the interface because kEk1 remains the same for GC1 and GC2 and the averaged errors of GC1 and GC2 near
the interface are roughly five times as large as those over the whole domain. This is due to the fact that within each time
step, GC1 and GC2 commit errors of Oð1Þ and OðhÞ, respectively, near the interface, as shown in (6). Apart from deteriorating
the accuracy away from the boundary by perturbing the linear systems in (44), these errors remain near the solid–fluid inter-
face. Therefore, if the flow near the solid–fluid interface is of interests, EJA is an much better choice than GC1 and GC2.

Table 5 shows the results for an irregular boundary case of b ¼ 0:2 with otherwise the same configuration as Table 3.
Comparing Table 3 to Table 5, the errors of EJA remain almost the same while those of GC1 roughly triple when the so-
lid–fluid interface changes from regular to irregular. Thus, EJA is more independent to the location of the interface than
GC1 and GC2.

Let Es denote the error of the sum of the derivatives
PD�1

d¼0
@u
@xd

, evaluated from the solution of u. Tables 6–8 list Es for the 2-
D slope tests, the 2-D sphere tests and the 3-D sphere tests, respectively. In all three tests, GC2 has roughly the same accu-
racy with EJA while GC1 is much less accurate, especially in the 3-D sphere tests.

Aside from a better accuracy, EJA is a better choice from an efficiency viewpoint, since EJA prevents local errors near the
boundary from being distributed to the whole domain, i.e., a lower-dimension operation helps to reduce errors in a higher-
dimension space.

Fig. 7. Surface plots of the final solution uðx; teÞ of EJA on 40 � 40 grids. m ¼ 10�3. The parallel lighting shows the jump of uðx; t2Þ at the solid–fluid interface.

4238 Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246
4.4. The accuracy and convergence of GCA depend on viscosity

For practical applications, it is necessary to examine the error dependence on viscosity, or equivalently, the Reynolds
number defined in (51). To this end, the error norms of Re ¼ 1;103;106 are shown in Tables 9–11 for the 2-D slope tests;
Tables 12–14 for the 2-D sphere tests; Tables 15–17 for the 3-D sphere tests. The error ratios as defined in (46) are plotted
in Fig. 8 and in Fig. 9 for the 2-D slope tests. Qualitatively the same as Figs. 8 and 9 are the error ratio plots of the 1-D tests

Table 3
Error norms of 1-D tests with b ¼ 0; m ¼ 10�3; c ¼ 0:01.

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1

GC1 8.33e�06 1.34 3.29e�06 1.75 9.78e�07 1.95 2.53e�07 1.99 6.37e�08
GC2 1.25e�06 2.21 2.69e�07 2.53 4.67e�08 2.72 7.06e�09 2.60 1.16e�09
EJA 1.41e�07 1.99 3.56e�08 1.98 9.01e�09 2.00 2.25e�09 2.00 5.62e�10

kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1
GC1 7.85e�05 0.54 5.40e�05 1.31 2.18e�05 1.78 6.33e�06 1.91 1.69e�06
GC2 1.06e�05 1.44 3.90e�06 2.18 8.58e�07 2.82 1.22e�07 2.92 1.60e�08
EJA 1.85e�07 1.98 4.70e�08 2.00 1.18e�08 2.00 2.94e�09 2.00 7.35e�10

Table 4
Error norms of 1-D tests near the interface ðy 2 ½0; 0:2�Þ with b ¼ 0; m ¼ 10�3 ; c ¼ 0:01.

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1

GC1 4.11e�05 1.33 1.63e�05 1.75 4.85e�06 1.95 1.25e�06 1.99 3.16e�07
GC2 5.59e�06 2.23 1.19e�06 2.61 1.94e�07 2.92 2.57e�08 2.91 3.40e�09
EJA 7.56e�08 1.84 2.11e�08 1.79 6.12e�09 1.94 1.60e�09 1.98 4.04e�10

kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1
GC1 7.85e�05 0.54 5.40e�05 1.31 2.18e�05 1.78 6.33e�06 1.91 1.69e�06
GC2 1.06e�05 1.44 3.90e�06 2.18 8.58e�07 2.82 1.22e�07 2.92 1.60e�08
EJA 1.13e�07 1.89 3.05e�08 1.99 7.69e�09 1.99 1.93e�09 2.00 4.83e�10

Table 5
Error norms of 1-D tests with b ¼ 0:2; m ¼ 10�3; c ¼ 0:01.

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1

GC1 2.08e�05 1.29 8.47e�06 1.71 2.58e�06 1.99 6.51e�07 2.03 1.60e�07
GC2 1.67e�06 2.23 3.56e�07 2.63 5.75e�08 2.85 8.00e�09 2.67 1.25e�09
EJA 1.43e�07 2.01 3.55e�08 1.99 8.96e�09 2.00 2.25e�09 2.00 5.61e�10

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1
GC1 1.97e�04 0.49 1.40e�04 1.27 5.80e�05 1.84 1.62e�05 1.94 4.21e�06
GC2 1.46e�05 1.45 5.35e�06 2.30 1.09e�06 2.93 1.42e�07 2.96 1.83e�08
EJA 1.83e�07 1.97 4.67e�08 1.99 1.17e�08 2.00 2.94e�09 2.00 7.35e�10

Table 6
Derivative error norms of 2-D slope tests with m ¼ 10�3 ; c ¼ 0:01.

Method kEsð10Þk1 O1 kEsð20Þk1 O1 kEsð40Þk1 O1 kEsð80Þk1 O1 kEsð160Þk1

GC1 5.93e�03 0.87 3.25e�03 0.57 2.18e�03 1.00 1.09e�03 1.09 5.12e�04
GC2 2.06e�03 1.96 5.29e�04 2.05 1.28e�04 2.07 3.05e�05 2.02 7.54e�06
EJA 2.02e�03 2.08 4.79e�04 2.01 1.19e�04 2.05 2.88e�05 2.00 7.20e�06

kEsð10Þk1 O1 kEsð20Þk1 O1 kEsð40Þk1 O1 kEsð80Þk1 O1 kEsð160Þk1
GC1 1.24e�02 0.70 7.67e�03 0.54 5.26e�03 0.96 2.70e�03 1.11 1.25e�03
GC2 2.71e�03 1.81 7.73e�04 2.09 1.81e�04 1.85 5.03e�05 2.08 1.19e�05
EJA 2.69e�03 2.06 6.45e�04 2.03 1.58e�04 2.03 3.88e�05 2.00 9.69e�06

Table 7
Derivative error norms of 2-D sphere tests with m ¼ 10�3 ; c ¼ 0:01.

Method kEsð10Þk1 O1 kEsð20Þk1 O1 kEsð40Þk1 O1 kEsð80Þk1 O1 kEsð160Þk1

GC1 1.13e�02 �1.03 2.32e�02 1.67 7.28e�03 0.60 4.80e�03 0.98 2.43e�03
GC2 2.01e�02 2.00 5.01e�03 2.30 1.02e�03 2.32 2.04e�04 2.18 4.49e�05
EJA 1.50e�02 2.26 3.15e�03 2.15 7.11e�04 2.10 1.65e�04 2.02 4.06e�05

kEsð10Þk1 O1 kEsð20Þk1 O1 kEsð40Þk1 O1 kEsð80Þk1 O1 kEsð160Þk1
GC1 3.95e�02 �0.09 4.19e�02 0.74 2.52e�02 0.39 1.92e�02 1.03 9.40e�03
GC2 2.76e�02 1.97 7.04e�03 2.24 1.49e�03 2.15 3.36e�04 2.05 8.11e�05
EJA 1.80e�02 2.19 3.97e�03 2.09 9.34e�04 2.06 2.23e�04 2.04 5.42e�05

Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246 4239

Table 8
Derivative error norms of 3-D sphere tests with m ¼ 10�3 ; c ¼ 0:01.

Method kEsð8Þk1 O1 kEsð16Þk1 O1 kEsð32Þk1

GC1 3.07e�02 0.32 2.45e�02 0.57 1.65e�02
GC2 3.20e�02 1.98 8.09e�03 2.29 1.65e�03
EJA 2.62e�02 2.36 5.09e�03 2.19 1.11e�03

kEsð8Þk1 O1 kEsð16Þk1 O1 kEsð32Þk1
GC1 5.59e�02 �0.48 7.81e�02 �0.20 8.95e�02
GC2 5.04e�02 1.81 1.44e�02 2.26 3.00e�03
EJA 3.51e�02 2.21 7.61e�03 2.10 1.77e�03

Table 9
Error norms of 2-D slope tests with m ¼ 1; c ¼ 0:01.

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1

GC1 1.59e�04 3.32 1.59e�05 2.32 3.17e�06 2.40 5.99e�07 2.36 1.17e�07
GC2 2.91e�05 2.73 4.37e�06 2.55 7.48e�07 2.33 1.49e�07 2.19 3.26e�08
EJA 9.45e�06 2.18 2.08e�06 2.10 4.85e�07 2.06 1.17e�07 2.03 2.86e�08

kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1
GC1 1.32e�03 2.52 2.30e�04 1.50 8.15e�05 1.90 2.19e�05 2.15 4.95e�06
GC2 7.37e�05 2.76 1.09e�05 3.03 1.33e�06 2.25 2.79e�07 2.12 6.41e�08
EJA 1.74e�05 2.09 4.08e�06 2.05 9.83e�07 2.03 2.41e�07 2.01 5.96e�08

Table 10
Error norms of 2-D slope tests with m ¼ 10�3; c ¼ 0:01.

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1

GC1 2.56e�05 2.21 5.53e�06 2.44 1.02e�06 2.78 1.48e�07 2.67 2.34e�08
GC2 1.45e�06 2.27 3.02e�07 2.73 4.55e�08 2.61 7.46e�09 2.46 1.35e�09
EJA 2.26e�07 2.01 5.61e�08 2.01 1.40e�08 2.02 3.45e�09 2.01 8.54e�10

kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1
GC1 4.97e�04 1.38 1.91e�04 1.33 7.62e�05 1.83 2.15e�05 2.13 4.92e�06
GC2 2.03e�05 1.71 6.22e�06 2.56 1.06e�06 2.79 1.53e�07 2.85 2.11e�08
EJA 2.97e�07 1.98 7.54e�08 2.00 1.89e�08 2.00 4.71e�09 2.00 1.18e�09

Table 11
Error norms of 2-D slope tests with m ¼ 10�6; c ¼ 0:01.

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1

GC1 3.34e�08 1.47 1.21e�08 0.91 6.45e�09 1.15 2.89e�09 1.14 1.31e�09
GC2 1.59e�09 1.91 4.21e�10 2.12 9.70e�11 1.97 2.47e�11 2.01 6.11e�12
EJA 2.39e�10 1.99 6.02e�11 2.00 1.50e�11 2.00 3.75e�12 1.98 9.49e�13

kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1
GC1 6.74e�07 0.50 4.75e�07 �0.49 6.69e�07 �0.07 7.03e�07 0.21 6.07e�07
GC2 2.46e�08 0.78 1.43e�08 1.02 7.08e�09 0.98 3.58e�09 1.01 1.78e�09
EJA 3.19e�10 1.72 9.69e�11 2.11 2.24e�11 2.13 5.12e�12 1.92 1.35e�12

Table 12
Error norms of 2-D sphere tests with m ¼ 1; c ¼ 0:01.

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1

GC1 8.44e�04 2.50 1.49e�04 1.85 4.13e�05 2.59 6.88e�06 2.15 1.55e�06
GC2 9.44e�04 2.61 1.55e�04 2.34 3.07e�05 2.16 6.89e�06 2.09 1.62e�06
EJA 5.64e�04 2.24 1.20e�04 2.14 2.73e�05 2.08 6.44e�06 2.04 1.57e�06

kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1
GC1 6.22e�03 1.95 1.62e�03 2.49 2.88e�04 1.37 1.12e�04 1.81 3.18e�05
GC2 1.43e�03 2.34 2.83e�04 2.18 6.25e�05 2.07 1.48e�05 2.04 3.60e�06
EJA 1.15e�03 2.17 2.55e�04 2.09 5.99e�05 2.05 1.45e�05 2.02 3.56e�06

4240 Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246

Table 13
Error norms of 2-D sphere tests with m ¼ 10�3; c ¼ 0:01.

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1

GC1 1.49e�04 1.54 5.14e�05 2.75 7.61e�06 1.68 2.38e�06 2.27 4.93e�07
GC2 5.25e�05 2.37 1.02e�05 2.46 1.85e�06 2.24 3.90e�07 2.18 8.62e�08
EJA 2.08e�05 1.99 5.23e�06 2.02 1.29e�06 2.03 3.14e�07 2.02 7.75e�08

kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1
GC1 2.11e�03 0.72 1.28e�03 2.16 2.87e�04 1.36 1.12e�04 1.81 3.18e�05
GC2 3.68e�04 2.02 9.07e�05 2.74 1.36e�05 2.72 2.06e�06 2.93 2.71e�07
EJA 5.44e�05 2.04 1.32e�05 1.99 3.33e�06 2.02 8.23e�07 2.01 2.04e�07

Table 14
Error norms of 2-D sphere tests with m ¼ 10�6; c ¼ 0:01.

Method kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1

GC1 1.76e�07 0.94 9.21e�08 1.62 3.01e�08 0.60 1.98e�08 1.00 9.89e�09
GC2 5.60e�08 2.16 1.25e�08 2.21 2.70e�09 1.84 7.53e�10 2.05 1.82e�10
EJA 2.22e�08 1.97 5.65e�09 2.00 1.41e�09 2.00 3.54e�10 2.00 8.87e�11

kEð10Þk1 O1 kEð20Þk1 O1 kEð40Þk1 O1 kEð80Þk1 O1 kEð160Þk1
GC1 2.61e�06 �0.01 2.63e�06 0.28 2.17e�06 �0.40 2.86e�06 0.01 2.84e�06
GC2 4.50e�07 1.29 1.85e�07 1.12 8.47e�08 0.72 5.13e�08 1.03 2.50e�08
EJA 6.08e�08 1.86 1.68e�08 1.93 4.41e�09 1.97 1.13e�09 2.01 2.80e�10

Table 15
Error norms of 3-D sphere tests with m ¼ 1; c ¼ 0:01.

Method kEð8Þk1 O1 kEð16Þk1 O1 kEð32Þk1

GC1 2.17e�03 2.73 3.27e�04 2.33 6.52e�05
GC2 1.78e�03 2.45 3.25e�04 2.27 6.74e�05
EJA 1.53e�03 2.36 2.98e�04 2.21 6.46e�05

kEð8Þk1 O1 kEð16Þk1 O1 kEð32Þk1
GC1 5.33e�03 1.33 2.11e�03 1.69 6.55e�04
GC2 3.58e�03 2.22 7.70e�04 2.13 1.76e�04
EJA 3.47e�03 2.20 7.54e�04 2.11 1.75e�04

Table 16
Error norms of 3-D sphere tests with m ¼ 10�3; c ¼ 0:01.

Method kEð8Þk1 O1 kEð16Þk1 O1 kEð32Þk1

GC1 1.44e�04 1.91 3.85e�05 2.18 8.52e�06
GC2 7.41e�05 2.11 1.72e�05 2.19 3.76e�06
EJA 5.55e�05 2.03 1.36e�05 2.05 3.29e�06

kEð8Þk1 O1 kEð16Þk1 O1 kEð32Þk1
GC1 1.68e�03 0.01 1.66e�03 1.35 6.53e�04
GC2 4.67e�04 1.68 1.46e�04 2.60 2.39e�05
EJA 2.07e�04 2.11 4.78e�05 1.92 1.26e�05

Table 17
Error norms of 3-D sphere tests with m ¼ 10�6; c ¼ 0:01.

Method kEð8Þk1 O1 kEð16Þk1 O1 kEð32Þk1

GC1 1.67e�07 1.44 6.17e�08 1.13 2.83e�08
GC2 7.74e�08 2.01 1.93e�08 2.02 4.76e�09
EJA 5.75e�08 1.99 1.45e�08 2.00 3.63e�09

kEð8Þk1 O1 kEð16Þk1 O1 kEð32Þk1
GC1 2.27e�06 �0.62 3.48e�06 �0.23 4.08e�06
GC2 5.62e�07 0.89 3.03e�07 0.91 1.61e�07
EJA 2.31e�07 1.77 6.76e�08 1.88 1.83e�08

Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246 4241

number in

(51) are log

1

0

Re and R as defined in (46) 06’, ‘

}’, ‘

 04

’, ‘*’ represent N¼10;

20;

40;

80;

160, respectively. An increasing curve impliesconvergence worse than second-order. The value of a vertical coordinate is the order-of-magnitude by which the GCA is less accurate than EJA.4242

Q. Zhang, P.L.-F. Liu/Journal of Computational Physics 229 (2010) 4225–4246
and the 2-D sphere tests, which are not repeated here. Since EJA is always second-order accurate independent of grid size
and viscosity, a constant RGCk implies second-order convergence. Similarly, an increasing curve of RGCk implies convergences
worse than second-order.

In Fig. 8, all the error ratios increase as Re increases, except that in Fig. 8(c) the 1-norm error ratio of GC2 to EJA appears to
have an asymptote of roughly 6.5 (this asymptote is about 13 for the 1-D tests) regardless of the grid size. This implies that
GC2 is second-order accurate in the 1-norm sense, which is confirmed in Tables 11, 14, and 17. It is also speculated that the
value of the asymptote depends on the flow type. The most interesting cases are those of Re ¼ 104;105;106: in Fig. 8(a), (b),
and (d), where error ratios of GCA to EJA increases as the grid size is reduced. Thus, within the range of shown grid sizes, the
convergence rates of GC2 in1-norm and those of GC1 in both 1-norm and1-norm are all less than 2. In Tables 11, 14, and
17, GC2 shows first-order convergence in the1-norm while the convergence of GC1 in the1-norm is oscillating around 0.
This confirms remark (II) of Section 2. It can also be deduced that all the grid sizes used in Tables 9–17 and Fig. 8 are bigger
than hcrit . Comparing Table 9 to Tables 10 and 11, or Table 12 to Tables 13 and 14, or Table 15 to Tables 16 and 17, the depen-
dence of accuracy and the convergence rate on viscosity is obvious for both GC1 and GC2. This behavior of GCA is also con-
firmed in Fig. 9 in that the slope of the curves increases as Reynolds number is increased. These exemplify remark (III) of
Section 2.

To examine the dependence of hcrit on viscosity, we perform more calculations on finer grids and present the results in
Fig. 9, where RGCk is plotted against the grid size. According to the analysis in Section 2, RGCk should first increase and then,
at a critical grid size hcrit , decrease or remain a constant thereafter.

At low-Reynolds number in Fig. 9(a) and (b), the grid size is fine enough so that GC2 has the same accuracy of EJA and
even GC1 has second-order convergence, although its accuracy is less satisfactory by several order-of-magnitudes. Because
viscosity is big enough to damp out all the high-frequency modes, most curves of RGCk do not have an ascending part, even
for RGC1

1 that does have an ascending part, the increase is small. For mid-range Reynold numbers, the ascending parts become
evident in Fig. 9(c) and (d), which confirms that hcrit decreases as the Reynolds number increases. In Fig. 9(e) and (f), theests error ratios of GC1 and GC2 to EJA with respect to grid resolution and the Reynolds
Fig. 8. 2-D slope t

G

C

k

Fig. 9. 2D slope test convergence rates of GC1 and GC2 with respect to the Reynolds number as defined in (51). The horizontal axis is log2
N

N0
with N0 ¼ 10;

the vertical axis is RGCk as defined in (46). ‘+’, ‘}’, ‘*’, and ‘�’ represent RGC1
1 ; RGC1

1 ; RGC2
1 , and RGC2

1 , respectively. An increasing curve implies convergence
worse than second-order while a decreasing curve implies convergence better than second-order. The value of a vertical coordinate is the order-of-
magnitude by which the GCA is less accurate than EJA.

Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246 4243
curves have no descending parts, implying that even the smallest grid size 1
24N0

is still bigger than hcrit . Note that at this res-
olution, the accuracy of EJA in the 1-D tests and the 2-D slope tests is already close to machine precision for high Reynolds
numbers.

Although GCAs can be second-order accurate or even better given small enough grid sizes, their errors are much larger
than that of EJA in a wide range of grid sizes. This is particularly true for GC1. Furthermore, because of limited computational

4244 Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246
resources, hcrit can be unrealistically small, depending on the particular type of the viscous flow. As an example, for m ¼ 10�6,
second-order convergence rates are impossible to show for the1-norms of GC1 and GC2, given the length of the mantissa of
a double-precision floating number.

Aside from the analysis, an interpretation based on physical intuition can also explain Figs. 8, and 9: when the fluid phase
is strongly diffusive (corresponding to small Re), lower-dimensional perturbations can be effectively damped out. However,
when viscosity becomes smaller and smaller, the same perturbations will cause larger and larger errors for the whole sys-
tem. Worse, the errors are committed and accumulated within each time step. This time-accumulation of errors at high Rey-
nolds numbers is the most important reason that GC1 and GC2 should be avoided for handling solid–fluid interfaces. This
statement also holds for general practical viscous flows because the advection terms in the Navier–Stokes equations are usu-
ally treated explicitly and they correspond to the nonhomogeneous term f ðx; tÞ in (1).

5. Concluding remarks

Although the error equations are the same for Poisson’s equation and the diffusion equation, the solution error of the dif-
fusion equation might accumulate to an unacceptable degree over Oð1=DtÞ ¼ Oð1=hÞ time steps, especially when the trunca-
tion error commited to the difference system at each time step is of a larger orde-of-magnitude than that of the intended
solution error. We have shown, theoretically and numerically, that the truncation error of the diffusion equation has to
be Oðh2Þ to achieve rigorous second-order accuracy for the solution. Despite the wide usage of the linear extrapolation of
GC1 for regular or irregular boundaries (i.e. u�1 ¼ �u0), it has serious shortcomings when coupled to any method aiming
for second-order accuracy. GC1 ignores all the jumps of velocity-derivatives, whereas these jumps exist anyway regardless
of the boundary being regular or not. The numerical results in this paper confirm that GC1 is far less than satisfactory even
for regular boundaries. For inviscid flows, GC1 generates first-order truncation error near the boundary, thus a second-order
method should still avoid using it.

We have proposed the explicit jump approximation method as a more accurate and more stable way to handle solid–fluid
interfaces for viscous flows. Although the resulting linear system is not symmetric, it is strictly diagonally dominant. Cur-
rently, EJA only applies to stationary boundaries; the generalization of EJA to moving boundary problems will be reported
in a future paper.

EJA finds the extrapolation locations by intersecting the solid–fluid interface to lines parallel to coordinate axes. As such,
accurate interface tracking is desirable, particularly when the solid–fluid interface is moving. The polygonal area mapping
(PAM) method [26] represents material areas with piecewise polygons and tracks the interface by polygon-clipping algo-
rithms from computational geometry. One attractive advantage of PAM is its high accuracy, particularly for sharp corners
and singularity points; another is its rigorous second-order convergence [25]. These make PAM the ideal candidate to be cou-
pled with EJA for moving boundary problems.

PAM has already been coupled to a projection method to form a hybrid continuum-particle model (HyPAM) [28] for
incompressible free-surface flows. In this model, a single-phase decomposition algorithm based on graph theory is used
to decompose the water phase into a continuum zone and a particle zone, where different governing equations are applied.
It is shown that the accuracy for practical free-surface flows, such as dam-break generated bores and swash-zone hydrody-
namics [27], can be improved dramatically by replacing volume-of-fluid methods with PAM and by changing how the veloc-
ity field near the free-surface is calculated. A long term goal is to combine these three elements together to form an air–
fluid–solid model, which could be of much value for practical applications of free-surface flows and flow-structures
interactions.

Acknowledgements

The first author, Qinghai Zhang, would like to thank Phillip Colella for his helpful discussions. The second author, Philip L.-
F. Liu, would like to acknowledge the support from the Humboldt Foundation, Germany NSF and NY Sea Grant Research
Institute during the preparation of this paper. Both authors also thank the referees for their helpful suggestions and
comments.

Appendix A. This appendix derives formulas for one-dimensional jump approximations. It is important to emphasize
that the ‘+’ and ‘�’ superscripts in EJA represent the positive and negative sides of the jump with respect to a coordinate, not
with respect to the two phases.

Referring to Fig. 1(b), Taylor expansions at yB in the fluid phase result in a linear system
u0

u1

u2

0
B@

1
CA ¼ uðyþB Þ þ

� �2 �3

ð�þ 1Þ ð�þ 1Þ2 ð�þ 1Þ3

ð�þ 2Þ ð�þ 2Þ2 ð�þ 2Þ3

0
B@

1
CA

h
h2

2

h3

6

0
B@

1
CA

@u
@y ðy

þ
B Þ

@2u
@y2 ðyþB Þ
@3u
@y3 ðyþB Þ

0
BB@

1
CCAþ Oðh4Þ;
where � ¼ 1
2� b. Hence the jumps of the first derivatives are

Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246 4245
J1;3
y ¼

@u
@y ðyBÞ
@2u
@y2 ðyBÞ
@3u
@y3 ðyBÞ

2
664

3
775

2
664

3
775 ¼

@u
@y ðy

þ
B Þ

@2u
@y2 ðyþB Þ
@3u
@y3 ðyþB Þ

0
BB@

1
CCA ¼ HW3

u0 � uðyþB Þ
u1 � uðyþB Þ
u2 � uðyþB Þ

0
B@

1
CAþ

Oðh3Þ
Oðh2Þ
OðhÞ

0
B@

1
CA;
where the diagonal matrix is
H ¼ diag
1!

h
;

2!

h2 ;
3!

h3

� �
; ð52Þ
and the extrapolation matrix is
W3 ¼

ð�þ1Þð�þ2Þ
2� � �ð�þ2Þ

�þ1
�ð�þ1Þ
2ð�þ2Þ

� 2�þ3
2� 2 � 2�þ1

2ð�þ2Þ
1

2� � 1
�þ1

1
2ð�þ2Þ

0
BB@

1
CCA: ð53Þ
The case that the solid phase lies at the positive side of the fluid phase can be derived similarly to reach a general result that
do not change the forms of (52) and (53):
J1;3
y ¼

@u
@y
;
@2u
@y2 ;

@3u
@y3

" #" #T

B

¼ SHW3duy þ Oðh3
; h2

;hÞT ; ð54Þ
where S = diag(s,1,s), s ¼ 1 if the solid–fluid interface lies at the negative side of the fluid; otherwise s ¼ �1. The extrapola-
tion vector is
duy ¼ uj; ujþs;ujþ2s

� �T � uðyþB Þ: ð55Þ
In the case when not enough data are available for W3, the extrapolation matrix is reduced to W1 ¼ 1 or
W2 ¼
�þ1
� � �

�þ1

� 1
�

1
�þ1

 !
: ð56Þ
Applying (54) to (25) yields (28), where S is canceled due to the selecting property of (25).

References

[1] P.A. Berthelsen, O.M. Faltinsen, A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries, J. Comput.
Phys. 227 (2008) 4354–4397, doi:10.1016/j.jcp.2007.12.022.

[2] S.J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publications, 1993, ISBN-13: 978-0486676203.
[3] A.L. Fogelson, J.P. Keener, Immersed interface methods for Neumann and related problems in two and three dimensions, SIAM J. Sci. Comput. 22 (5)

(2000) 1630–1654.
[4] F. Gibou, R. Fedkiw, A fourth-order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan

problem, J. Comput. Phys. 202 (2005) 577–601, doi:10.1016/j.jcp.2004.07.018.
[5] K. Ito, Z. Li, Y. Kyei, Higher-order, Cartesian grid based finite difference schemes for elliptic equations on irregular domains, SIAM J. Sci. Comput. 27 (1)

(2005) 346–367.
[6] H. Johansen, P. Colella, A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput. Phys. 147 (1998) 60–85.
[7] J.D. Lawson, J.L. Morris, The extrapolation of first-order methods for parabolic partial differential equations. I, SIAM J. Numer. Anal. 15 (6) (1978) 1212–

1224.
[8] D.V. Le, B.C. Khoo, J. Peraire, An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries, J. Comput. Phys.

220 (2006) 109–138, doi:10.1016/j.jcp.2006.05.004.
[9] L. Lee, R.J. Leveque, An immersed interface method for incompressible Navier–Stokes equations, SIAM J. Sci. Comput. 25 (3) (2003) 832–856,

doi:10.1137/S1064827502414060.
[10] R.J. Leveque, Z. Li, Immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (4)

(1994) 1019–1044.
[11] R.J. Leveque, Z. Li, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput. 18 (3) (1997) 709–735.
[12] Z. Li, M.-C. Lai, The immersed interface method for the Navier–Stokes equations with singular forces, J. Comput. Phys. 171 (2) (2001) 822–842,

doi:10.1006/jcph.2001.6813.
[13] A. Mayo, The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. Anal. 21 (1984) 285–299.
[14] P. McCorquodale, P. Colella, D.P. Grote, J.-L. Vay, A node-centered local refinement algorithm for Poisson’s equation in complex geometries, J. Comput.

Phys. 201 (2004) 34–60, doi:10.1006/jcph.2004.04.022.
[15] P. McCorquodale, P. Colella, H. Johansen, A Cartesian grid embedded boundary method for the heat equation on irregular domains, J. Comput. Phys. 173

(2001) 620–635, doi:10.1006/jcph.2001.6900.
[16] R. Mittal, G. Iaccarino, Immersed boundary methods, Ann. Rev. Fluid Mech. 37 (2005) 239–261, doi:10.1146/annurev.fluid.37.061903.175743.
[17] D.A. Swayne, Time-dependent boundary and interior forcing in locally one-dimensional schemes, SIAM J. Sci. Stat. Comput. 8 (5) (1987) 755–767.
[18] Y.-H. Tseng, J.H. Ferziger, A ghost cell immersed boundary method for flow in complex geometry, J. Comput. Phys. 192 (2003) 593–623, doi:10.1016/

j.jcp.2003.07.024.
[19] E.H. Twizell, A.B. Gumel, M.A. Arigu, Second-order, L0-stable methods for the heat equation with time-dependent boundary conditions, Adv. Comput.

Math. 6 (1996) 333–352.
[20] H.S. Udaykumar, R. Mittal, W. Shyy, Computation of solid–fluid phase fronts in the sharp interface limit on fixed grids, J. Comput. Phys. 153 (1999)

535–574.
[21] A. Wiegmann, K.P. Bube, The immersed interface method for nonlinear differential equations with discontinuous coefficients and singular sources,

SIAM J. Numer. Anal. 35 (1) (1998) 177–200.

http://dx.doi.org/10.1016/j.jcp.2007.12.022
http://dx.doi.org/10.1016/j.jcp.2004.07.018
http://dx.doi.org/10.1016/j.jcp.2006.05.004
http://dx.doi.org/10.1137/S1064827502414060
http://dx.doi.org/10.1006/jcph.2001.6813
http://dx.doi.org/10.1006/jcph.2004.04.022
http://dx.doi.org/10.1006/jcph.2001.6900
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175743
http://dx.doi.org/10.1016/j.jcp.2003.07.024
http://dx.doi.org/10.1016/j.jcp.2003.07.024

4246 Q. Zhang, P.L.-F. Liu / Journal of Computational Physics 229 (2010) 4225–4246
[22] A. Wiegmann, K.P. Bube, The explicit jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions, SIAM J.
Numer. Anal. 37 (3) (2000) 827–862.

[23] S. Xu, Z.J. Wang, An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys. 216 (2006) 454–493,
doi:10.1016/j.jcp.2005.12.016.

[24] S. Xu, Z.J. Wang, Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation, SIAM J. Sci.
Comput. 27 (6) (2006) 1948–1980, doi:10.1137/040604960.

[25] Q. Zhang, On explicit interface tracking, SIAM J. Numer. Anal. (2010), submitted for publication.
[26] Q. Zhang, P.L.-F. Liu, A new interface tracking method: the polygonal area mapping method, J. Comput. Phys. 227 (8) (2008) 4063–4088, doi:10.1016/

j.jcp.2007.12.014.
[27] Q. Zhang, P.L.-F. Liu, A numerical study of swash flows generated by bores, Coastal Eng. 55 (12) (2008) 1113–1134, doi:10.1016/

j.coastaleng.2008.04.010.
[28] Q. Zhang, P.L.-F. Liu, HyPAM : A hybrid continuum-particle model for incompressible free-surface flows, J. Comput. Phys. 228 (4) (2009) 1312–1342,

doi:10.1016/j.jcp.2008.10.029.
[29] X. Zhong, A new high-order immersed interface method for solving elliptic equations with imbedded interface of discontinuity, J. Comput. Phys. 225

(2007) 1066–1099, doi:10.1016/j.jcp.2007.01.017.
[30] Y.C. Zhou, S. Zhao, M. Feig, G.W. Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and

singular sources, J. Comput. Phys. 213 (2006) 1–30, doi:10.1016/j.jcp.2005.07.022.

http://dx.doi.org/10.1016/j.jcp.2005.12.016
http://dx.doi.org/10.1137/040604960
http://dx.doi.org/10.1016/j.jcp.2007.12.014
http://dx.doi.org/10.1016/j.jcp.2007.12.014
http://dx.doi.org/10.1016/j.coastaleng.2008.04.010
http://dx.doi.org/10.1016/j.coastaleng.2008.04.010
http://dx.doi.org/10.1016/j.jcp.2008.10.029
http://dx.doi.org/10.1016/j.jcp.2007.01.017
http://dx.doi.org/10.1016/j.jcp.2005.07.022

	Handling solid–fluid interfaces for viscous flows: Explicit jump approximation vs. ghost cell approaches
	Introduction
	An error analysis
	The explicit jump approximation method
	Mathematical foundation
	Laplacian discretization
	Time integration
	Solution procedure

	Numerical experiments
	Setup
	Instability of time-explicit GCA
	Accuracy and convergence: Mid-range Reynolds numbers
	The accuracy and convergence of GCA depend on viscosity

	Concluding remarks
	Acknowledgements
	Appendix A
	References

